

MEDIZINISCHE FAKULTÄT ♦ RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN

INSTITUT FÜR MEDIZINISCHE INFORMATIK
GESCHÄFTSFÜHRENDER DIREKTOR: UNIVERSITÄTSPROFESSOR DR. DR. KLAUS SPITZER

The CERES Project

CERES Software Development Guidelines

Lutz Ißler
Nicolas Becker

Cord Spreckelsen
Christa Weßel

Aachener Schr
Volume 2, Band 1, Februar 2007

ISSN 1860-8906
ISBN 978-3-9810089-5-1

i f ten zur Medizinischen Informatik

Aachener Schriften zur Medizinischen Informatik
ISSN 1860-8906
ISBN 978-3-9810089-5-1

Herausgeber: Institut für Medizinische Informatik der RWTH Aachen
 Pauwelsstr. 30
 D-52074 Aachen

Geschäftsführender Direktor: Universitätsprofessor Dr. Dr. Klaus Spitzer

CERES Software Development Guidelines 2

Contents

1 Introduction 3

2 Definition of terms 4

3 Preamble 5

4 Applicability 5

5 The guidelines 6
5.1 Correctness . 6
5.2 Reliability and efficiency . 6
5.3 Integrity . 7
5.4 Usability . 7
5.5 Copyright and Licenses . 7
5.6 Documentedness . 8
5.7 Maintainability . 9
5.8 Flexibility . 10
5.9 Portability . 10
5.10 Testability . 10
5.11 Reusability . 10
5.12 Interoperability . 11

6 Development Course 12

References 13

Department of Medical Informatics, RWTH Aachen University, Germany 2004–2006

CERES Software Development Guidelines 3

1 Introduction

In a medical informatics research project, there are usually people from different disci-
plines working together. Whilst the scientific work in such a project is done according
to well-known standards, there is no common procedure to help those project members
who develop software. The resulting software is often a patchwork consisting of soft-
ware modules with many architectural styles, modularization concepts, and degrees of
maturity, which comes from the typically very different skill levels of the developers.

This led to the introduction of the CERES Software Development Guidelines in the
CERES Project. The project works on the research on a web-based information system
on hospital related data [WKI+3b], [WWS06]. The goal is to offer ubiquitous, up-
to-date and valid information about hospitals, their structure, their services and their
results. The users - citizens and staff members of hospitals, health insurance companies,
institutions of the government and professional medical associations - shall be able to
look on different hospitals at a glance on one platform. The central, object-oriented
database is based on a meta-model of “the German hospital”. The user is able to access
this database on runtime by different web-frontends, which are for example “Search”,
“Tables”, “Texts” and “Map”.

The multi-disciplinary project team consists of scientists and students of computer sci-
ence, medicine, public health and economics. The tools and modules of the web-based
information system on hospital related data are mostly the result of student’s research
projects and diploma theses.

The first author of the guideline designed the guideline based on literature work and
iterative feedback of the team members in 2004. The author and the team checked the
guidelines on their appropriateness and revised them if necessary six-monthly. The sec-
ond author took over to proceed with the maintenance of the guidelines from June 2005
on. The two senior scientists of the project guided the development and maintenance of
the guidelines.

Department of Medical Informatics, RWTH Aachen University, Germany 2004–2006

CERES Software Development Guidelines 4

2 Definition of terms

The key words ”MUST”, ”MUST NOT”, ”REQUIRED”, ”SHALL”, ”SHALL NOT”,
”SHOULD”, ”SHOULD NOT”, ”RECOMMENDED”, ”MAY”, and ”OPTIONAL” in
this section are to be interpreted as described in RFC 21191.

The following is cited from RFC 2119:

MUST This word, or the terms ”REQUIRED” or ”SHALL”, mean that the definition
is an absolute requirement of the specification.

MUST NOT This phrase, or the phrase ”SHALL NOT”, mean that the definition is an
absolute prohibition of the specification.

SHOULD This word, or the adjective ”RECOMMENDED”, mean that there may exist
valid reasons in particular circumstances to ignore a particular item, but the full
implications must be understood and carefully weighed before choosing a different
course.

SHOULD NOT This phrase, or the phrase ”NOT RECOMMENDED” mean that there
may exist valid reasons in particular circumstances when the particular behavior
is acceptable or even useful, but the full implications should be understood and
the case carefully weighed before implementing any behavior described with this
label.

MAY This word, or the adjective ”OPTIONAL”, mean that an item is truly optional.
One vendor may choose to include the item because a particular marketplace re-
quires it or because the vendor feels that it enhances the product while another
vendor may omit the same item. An implementation which does not include a
particular option MUST be prepared to interoperate with another implementation
which does include the option, though perhaps with reduced functionality. In the
same vein an implementation which does include a particular option MUST be
prepared to interoperate with another implementation which does not include the
option (except, of course, for the feature the option provides.)

1Request For Comments No. 2119. See http://www.faqs.org/rfcs/rfc2119.html

Department of Medical Informatics, RWTH Aachen University, Germany 2004–2006

http://www.faqs.org/rfcs/rfc2119.html

CERES Software Development Guidelines 5

3 Preamble

This guideline document MUST be revised every six months by the CERES project team.
In the revision, the project team should have a closer look on specifications on the used
software and discuss wether or not to update these specifications in the guidelines. Some
footnotes include information that has to be observed for forthcoming revisions.

The steps of the revision MUST be documented in section 6 of this guideline document
(Stage of Affairs).

Criteria regarding the current server environment are documented in the CERES Tomcat
Tutorial.

4 Applicability

The guidelines apply to all software developed as a part of the CERES project. Mainly,
“all software” are all servlets running on the CERES project server, and the modelling
tool ZEUS.

Every developer MUST follow the guidelines. This refers also to the re-engineering of
software that was not developed according to the guidelines.

Software developed for throw-away purpose2 MAY be developed according to the guide-
lines.

2A German circumscription would be “Testballon”.

Department of Medical Informatics, RWTH Aachen University, Germany 2004–2006

CERES Software Development Guidelines 6

5 The guidelines

The guidelines were developed according to the software quality criteria defined in the
IEEE 610.12-1990 standard.

The following is called the “CERES software quality maxime” and forms the foundation
of all software quality management in the CERES project:

A piece of software in CERES achieves minimum “software quality”
iff

all MUST criteria from the guidelines are fulfilled.

5.1 Correctness

• The author MUST create a requirements specification document for the software.
The requirements specification document (“specification” for short) MUST list the
scientific goals, the functional requirements and the nonfunctional requirements.
The specification MAY (for applications that are intended to interact with end-
users: SHOULD) contain a description of several scenarios in which the software
is used in the intended manner to solve problems.

• The author MUST present the specification to the project group. The project
group SHOULD give feedback to the author, and the author MUST overwork the
specification according to the feedback.

• The author MUST report any changes of the specification to the project group, and
the author MUST document the changes along with the rationals for the changes,
in the specification.

• The author (supported by at least one project group member) MUST perform an
software acceptance test3. In this test, it is checked wether the software fulfills all
functional and nonfunctional requirements stated in the specification. The author
MUST write a test report and present the report to the project group.

5.2 Reliability and efficiency

• The author MUST state the following criteria as nonfunctional requirements: the
usual usage environment for the software (hardware, software, internet connection
speed, etc.), the usual number of users working with the software at the same time,
the usual amount of data processed with the software, and the expected response
times for the user interaction.

3German: Abnahmetest

Department of Medical Informatics, RWTH Aachen University, Germany 2004–2006

CERES Software Development Guidelines 7

• If the software has to fulfill any performance requirements, the author SHOULD
verify the conformance to these requirements on an environment that represents
the intended target computer. If no such system is available, the author MUST
document the characteristics of the used test system (hardware and software re-
sources etc.).

• The author MUST provide a mechanism to measure wether the software fulfills the
reliability criteria. The author MUST substantiate the suitability of this mecha-
nism. For example, a mechanism that documents the stable running of a servlet,
which processes requests from 5 users for 24 hours, may be appropriate to demon-
strate the reliability of this servlet.

• The author MUST ensure that only as much data as needed is requested from
or transferred to the database or other data sources. In general, that means to
transfer only data that is required to complete the current task.

Example 1: It is not necessary to retrieve the whole extension of a class from the
database when only one object of the class is needed for the further processing.

Example 2: The decision to store JAVA objects to a file in the direct way by
the serialization features of the JAVA SDK will store a huge overhead of data
compared to a individually developed XML storage of the objects. The developer
has to measure how to achieve a efficient implementation without an inadequate
raise of the development time.

5.3 Integrity

• All servlets MUST be derived from the class CeresServlet4.

• Every software accessing the database MUST use the CERES toolkit for this ac-
cess.5

5.4 Usability

• All CERES web applications MUST follow the CERES Web Application Style
guide.

5.5 Copyright and Licenses

• For every third-party library or component, the CERES developer inventing the
usage of the library MUST document which license applies to the used library in

4During the revision process of the CERES Software Development guidelines it must be continuously
checked that CeresServlet is still a generic class for the CERES Project.

5The usage of the CERES toolkit is required because the toolkit implements an access control layer for
the database, and because the toolkit abstracts from the used database.

Department of Medical Informatics, RWTH Aachen University, Germany 2004–2006

CERES Software Development Guidelines 8

the central “CERES used components: licenses and sources of supply” document.

• If a particular software needs a third-party library, the author MUST ensure this
library is available at least as free software or, if no free library for the particular
functionality exist, obtain the permission of the project group to use a non–free
library.

• If the development of a particular software requires a specific development envi-
ronment, the author MUST

– ensure the development environment is available at least as free software, or

– ensure the institute owns a license for the development environment, or

– obtain the permission of the project group to use a non–free development
environment.

• The usage of free software with proprietary licenses (eg. the GNU GPL6) is accept-
able, although CERES is not published as free or open source software, because
CERES is currently in an experimental state. In the case CERES is deployed and
either available by download or purchase, the project group has to reconsider all
license questions.

5.6 Documentedness

• Every identifier declared as public or protected MUST be documented with a
Javadoc comment.

• Every complex method, every class, and every package MUST be documented
with a Javadoc comment that contains at least an introducing explanation of the
complex functionality.

• The author MUST clarify the structure of the source code and the general idea of
the developed algorithms in his thesis, a tutorial or the CERES Project Documen-
tation. The author MAY use comments to clarify the structure of the source code
and the general idea of the developed algorithms to other developers reading the
source code7.

• Every software MUST be accompanied by a short tutorial that explains the main
program logic in order to support programmers that maintain or extend the soft-
ware in the future. This tutorial MUST contain at least one class diagram (formu-
lated in the Unified Modeling Language) that outlines the software architecture.

6GNU General Public License
7This does neither mean the obligation to comment every obvious statement nor the right to abandon

comments at all.

Department of Medical Informatics, RWTH Aachen University, Germany 2004–2006

CERES Software Development Guidelines 9

• Every software MUST be accompanied by a list of required third-party libraries
or components. For each library or component, it MUST be stated where to get
it from and how to install it.

• Every servlet MUST be accompanied by a list of resources it may access during
runtime.

5.7 Maintainability

• Every software SHOULD separate program logic and input/output. That is, every
software SHOULD follow the intentional spirit of existing design patterns8, for
example the model-view-controller design pattern9.

• The author MUST test the software in a systematic and reproducible manner with
the objective of verification. The author MUST identify relevant and meaningful
test data and present the test design to the project group who supports the author
to set it in an adequate form. If the software is intended to run on the project server,
the author must first test it on a separate runtime environment and then on the
project server. For example, JUnit test case classes10 or a cognitive walkthrough
could be appropriate for testing.

• All classes developed for a special tool within the CERES project MUST be con-
tained in a package named “ceres.(toolname)”.

• All extensions developed for ZEUS SHOULD be contained in a package named
“ceres.zeus.modules.(toolname)”.

• Every developer of a servlet MUST separate between Java class files, static files
that are served by the web server11 and additional files that do not belong to the
former. The Tomcat Tutorial (section ??) specifies how to achieve this.

• Every developer MUST follow the JAVA Code Conventions12, with one exception:
use only tab stops for indention.

• Every developer MUST follow the well-known modular programming paradigm.13

• Every programmer SHOULD make excessive use of the mechanisms the JAVA pro-
gramming language provides to support maintainability and reusability. In partic-
ular, these are the language constructs for packages and interfaces, and modifiers
for identifier visibility.

8See [GHJ95]
9See http://www.exciton.cs.rice.edu/JavaResources/DesignPatterns/MVC.htm for an explanation

of the model-view-controller pattern.
10If you have to invent tests on whole servlets or other special types of classes, consider the use of a

specific JUnit extension for that type.
11These are static files that must be accessed by the user.
12See http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
13For a reference on this, see standard literature on object-oriented programming and software design.

Department of Medical Informatics, RWTH Aachen University, Germany 2004–2006

http://www.exciton.cs.rice.edu/JavaResources/DesignPatterns/MVC.htm
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

CERES Software Development Guidelines 10

5.8 Flexibility

• Every developer MUST document the intended purpose of the developed software.
The documentation MUST include the original purpose and SHOULD try to draw
an exact outline of the purpose in order to establish a border to other modules.

5.9 Portability

• All software in the CERES project except for servlets MUST be developed using
the Java SDK 5.014 (Java 1.5.0). In order to avoid compatibility problems, servlets
MUST be developed using Java SDK 1.4.215. Every Software MUST be testet for
compatibility if the given Java version changes.

• All servlets MUST support the Servlet API, version 2.416.

• As all CERES web applications MUST follow the CERES Web Application Style
guide, all CERES web applications MUST also be developed respecting the browser
requirements specified there.

• All software in the CERES project MUST NOT use absolute pathnames or hard-
coded URLs, port numbers etc., if avoidable. Instead, the software SHOULD use
relative pathnames or obtain such values from its context17.

• All software in the CERES project MUST NOT contain any pathnames (absolute
or relative), URLs, port numbers etc. hardcoded in the source. Instead, servlets
MUST define constants for such values in the class ceres.Configuration. All
other software except for servlets MUST define constants for such values in a
configuration file.

5.10 Testability

• A class SHOULD NOT contain a single method that does all work. In most cases,
such a class will be the result of disregarding the object oriented programming
paradigm, and therefore leading to a bad testability. However, sometimes such a
method doEverything() cannot be avoided (eg. in servlet development).

5.11 Reusability

• The reusability of a software is the direct result from its Maintainability and Porta-
bility. Confer the respective section for further explanations.

14The Java version recommended here might change with the next guideline revision.
15The Java version recommended here might change with the next guideline revision.
16The API version recommended here might change with the next guideline revision.
17For example, to obtain its URL, a servlet could use the field ceres.HttpServletInfo.baseUrl.

Department of Medical Informatics, RWTH Aachen University, Germany 2004–2006

CERES Software Development Guidelines 11

5.12 Interoperability

• Every developer MUST document which data the developed software consumes
and outputs, and which protocols are used for this.

• Every software module exchanging Java objects with another software module
MUST provide a Java interface declaration. Every software module exchanging
any other kind of data with another software module MUST exchange this data
via XMI documents.18

• Every developer MUST document wether the software invents a proprietary in-
terface or protocol for data exchange. If such a thing is invented, the developer
MUST document it.

18HERA may define an additional interface. If the development of HERA continues, this point must be
adapted.

Department of Medical Informatics, RWTH Aachen University, Germany 2004–2006

CERES Software Development Guidelines 12

6 Development Course

LI20040615 In the meeting on 2004-06-15, the CERES project group specified sev-
eral guidelines for the software development in CERES. The list is still
incomplete and will be finished in the meeting on 2004-06-22.

LI20040625 Completed the guidelines according to the results of the discussion in
the meeting on 2004-06-22.

LI040715 Revised the guidelines according to the results of the discussion in the
meeting on 2004-07-06.

LI20040731 In the meeting on 2004-07-27, the CERES project group accepted the
guidelines. The guidelines affect every CERES software project that
is started after 2004-07-27, including projects that are already in the
planning phase but not yet in the coding phase.

LI20041027 Replaced all rules that refer to browser compatibility or usability by
references to the Web Application Style guide.

LI20050201 Overworked the guidelines according to the first periodic revision of the
guidelines on 2005-02-01.

LI20050419 Added a portability criterion concerning absolute paths.
NB20050605 Added a maintainability criterion concerning the separation of files ac-

cording to their function.
NB20050810 Adapted the guidelines according to the periodic revision of the guide-

lines on 2005-08-09.
NB20060215 Adapted the guidelines according to the periodic revision of the guide-

lines on 2006-02-14.
NB20060227 Adapted the guidelines according to the discussion on 2006-02-21.
NB20060819 Adapted the guidelines according to the periodic revision of the guide-

lines on 2006-08-08.

Department of Medical Informatics, RWTH Aachen University, Germany 2004–2006

CERES Software Development Guidelines 13

References

[GHJ95] Erich Gamma, Richard Helm, and Ralph Johnson. Design Patterns: Ele-
ments of Reusable Object–Oriented Software. Addison-Wesley, Reading (Mas-
sachusetts), 1995. 9

[WKI+3b] C Weßel, G Karakas, L Ißler, F Weymann, S Palm, C Spreckelsen, and
K Spitzer. Ceres - ein instrument zur webbasierten darstellung, pflege und
visualisierung von krankenhausinformationen. In W Köpcke, editor, Infor-
matik, Biometrie und Epidemiologie in Medizin und Biologie. Abstracts der
48. Jahrestagung der GMDS, pages 361–362, Jena, 14.–19. Sept. 2003b. Ur-
ban und Fischer Verlag. Project CERES. 3

[WWS06] Christa Weßel, Frédéric Weymann, and Cord Spreckelsen. A framework
for the web-based multi-method evaluation of a web-based information
system on hospitals. In M Löffler and A Winter, editors, 51. Jahresta-
gung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie
und Epidemiologie (GMDS). Klinische Forschung vernetzen. 10.-14. Septem-
ber 2006, page 90, Leipzig, 2006. Universität Leipzig. Abstract online:
http://www.egms.de/en/meetings/gmds2006/06gmds226.shtml. 3

Department of Medical Informatics, RWTH Aachen University, Germany 2004–2006

http://www.egms.de/en/meetings/gmds2006/06gmds226.shtml

	Introduction
	Definition of terms
	Preamble
	Applicability
	The guidelines
	Correctness
	Reliability and efficiency
	Integrity
	Usability
	Copyright and Licenses
	Documentedness
	Maintainability
	Flexibility
	Portability
	Testability
	Reusability
	Interoperability

	Development Course
	References

